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Abstract

We propose a method to calculate lower and upper bounds of some exponential multivariate integrals using moment relaxations and show
that they asymptotically converge to the value of the integrals when the moment degree increases. We report computational results for integrals
involving the normal distribution and exponential order statistic probabilities.
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1. Introduction

Multivariate integrals arise in statistics, physics, engineer-
ing and finance applications among other areas. For exam-
ple, these integrals are needed to calculate probabilities over
compact sets for multivariate normal random variables. It is
therefore important to compute or approximate multivariate
integrals. Usual methods include Monte Carlo schemes (see
[10] for details) and cubature formulae as shown in e.g. de la
Harpe and Pache [3]. Genz [4] presents very good algorithms
for rectangular probability computation of bivariate and trivari-
ate normal distributions. However, there are still many open
problems currently and research on general multivariate inte-
grals is very much active due to its importance as well as its
difficulties. For instance, most cubature formulas are restricted
to special sets like boxes and simplices, and even in this par-
ticular context, determination of orthogonal polynomials used
to construct a! cubature is not an easy task.

1.1. Contributions and paper outline

In this paper, we attempt to approximate a class of expo-
nential integrals, which in particular can be useful to calcu-
late probabilities of multivariate normal random variables on
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compact sets � ⊂ Rn more general than hyper rectangles boxes
or simplices. Specifically, our contribution and structure of the
paper are as follows:

(1) In Section 2, we provide a general framework to calculate
lower and upper bounds for a class of exponential integrals
on � ⊂ Rn. These bounds are calculated by solving a
hierarchy of specific semidefinite programming problems
constructed from appropriate sequences of moments.

(2) In Section 3, we prove that the two monotone sequences
of lower and upper bounds generated by these semidefinite
programming problems will asymptotically converge to the
real value of the integral. The proof is due to some results
from the problem of moments.

(3) In Section 4, computational results are reported for order
statistic probabilities of multivariate random variables such
as Gumbel’s exponentials and normal variables. These re-
sults show that the proposed method is indeed applicable
for this class of exponential integrals.

2. Moment framework

We consider the following class of multivariate exponential
integrals:

� =
∫
�

g(x)eh(x) dx, (1)
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where x ∈ Rn, g, h ∈ R[x], the ring of real polynomials, and
� ⊂ Rn is a compact set defined as

� = {x ∈ Rn : bl
1 �x1 �bu

1 , bl
i(x[i − 1])�xi �bu

i (x[i − 1])
∀i = 2, ..., n}, (2)

where x[i] ∈ Ri is the vector of first i elements of x for all
i = 1, . . . , n, bl

i , b
u
i ∈ R[x[i − 1]] for all i = 2, . . . , n, and

bl
1, b

u
1 ∈ R.

For clarity of exposition, we will only describe the approach
for simple integrals in two variables x and y on a box [a, b] ×
[c, d] in this paper. The multivariate case n�3 essentially uses
the same machinery with more complicated and tedious nota-
tion. Its detailed exposition can be found in Bertsimas et al. [1].

2.1. Integral formulation

Suppose that one wants to approximate

� =
∫ b

a

∫ d

c

g(x, y)eh(x,y) dy dx, (3)

where g, h are bivariate polynomials and where � := [a, b] ×
[c, d].

Consider the measure � on R2 defined by

�(B) =
∫
�∩B

eh(x,y) dy dx ∀B ∈ B(R2), (4)

and its sequence of moments z = {z(�, �)}:
z(�, �) =

∫
x�y� d�(x, y) =

∫
�

x�y�eh(x,y) dy dx

∀(�, �) ∈ N2. (5)

Clearly, �=∑
(�,�)∈N2g(�,�)z(�, �)=〈g, z〉, where g = (g(�,�))

and g(�,�) is the coefficient of the monomial x�y�. Therefore
we can compute � once we have all necessary moments z(�, �).

Integration by parts yields

z(�, �) = 1

� + 1

∫ b

a

x�[y�+1eh(x,y)]y=d
y=c dx

− 1

� + 1

∫ b

a

∫ d

c

x�y�+1 �h(x, y)

�y
eh(x,y) dy dx.

If {h(�,�)} is the finite sequence of coefficients of the polynomial
h(x, y) then

z(�, �) = d�+1

� + 1

∫ b

a

x�eh(x,d) dx − c�+1

� + 1

∫ b

a

x�eh(x,c) dx

−
∑

(�,�)∈N2

�h(�,�)

� + 1
z(� + �, � + �).

Define the following two measures d	 = eh(x,d) dx and d
 :=
eh(x,c) dx on [a, b] with their corresponding sequences of mo-
ments:

v(�) =
∫

x� d	(x) =
∫ b

a

x�eh(x,d) dx;

w(�) =
∫

x� d
(x) =
∫ b

a

x�eh(x,c) dx, (6)

for all � ∈ N. Then

z(�, �) = d�+1

� + 1
v(�) − c�+1

� + 1
w(�)

−
∑

(�,�)∈N2

�h(�,�)

� + 1
z(� + �, � + �). (7)

Let k(x) := h(x, d) and l(x) := h(x, c). Clearly, x 	→ k(x)

and x 	→ l(x) are univariate polynomials in x. Integration by
parts for v(�) in (6) yields

v(�) = 1

� + 1
[x�+1ek(x)]x=b

x=a

− 1

� + 1

∫ b

a

x�+1 dk(x)

dx
ek(x) dx ∀� ∈ N

or

v(�) = b�+1ek(b)

� + 1
− a�+1ek(a)

� + 1

−
∑
�∈N

�k�

� + 1
v(� + �) ∀� ∈ N, (8)

where {k�} is the finite sequence of coefficients of the polyno-
mial x 	→ k(x) = ��k�x

� of degree kx .
Similarly, we have

w(�) = b�+1el(b)

� + 1
− a�+1el(a)

� + 1
−

∑
�∈N

�l�
� + 1

w(� + �)

∀� ∈ N, (9)
where {l�} is the finite sequence of coefficients of the polyno-
mial x 	→ l(x) = ��l�x

� of degree lx .
In view of (8) and (9), all v(�) and w(�) are affine functions

of v0, . . . , vkx−1, and w0, . . . , wlx−1, respectively. In the next
section, we introduce the moment relaxation framework based
on necessary conditions of moment sequences to calculate the
given integral.

2.2. Moment relaxation

Consider the measure � and its corresponding sequence of
moments z. For every r ∈ N, the r-moment matrix associated
with � (or equivalently, with z) Mr(�) ≡ Mr(z) is a matrix of
size (

r+2
r

). Its rows and columns are indexed in the canonical
basis {x�y�} of R[x, y], and
Mr(z)((�, �), (�, �)) := z(� + �, � + �), � + �, � + ��r .

(10)

Similarly, given  ∈ R[x, y], the localizing matrix Mr(�z) as-
sociated with z and  is defined by

Mr(�z)((�, �), (�, �)) :=
∑

(�,�)∈N2

(�,�)z(� + � + �, � + � + �),

� + �, � + ��r , (11)

where �={(�,�)} is the vector of coefficients of  in the canon-

ical basis {x�y�}.
If we define the matrix M

(�,�)
r (z) for all (�, �) ∈ N2 with

elements

M(�,�)
r (z)((�, �), (�, �)) = z(� + � + �, � + � + �),

� + �, � + ��r ,
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then the localizing matrix can be expressed as Mr(�z) =∑
(�,�)∈N2(�,�)M

(�,�)
r (z).

Note that for every polynomial f ∈ R[x, y] of degree at most
r with its vector of coefficients denoted by f={f(�,�)}, we have

〈f, Mr(z)f〉 =
∫

f 2 d�, 〈f, Mr(�z)f〉 =
∫

f 2 d�. (12)

Then necessarily, Mr(z)�0 and Mr(�z)�0 whenever � has its
support contained in the level set {(x, y) ∈ R2 : (x, y)�0}.
If the sequence of moments is restricted to those moments
used to construct the moment matrix Mr(z) (up to moments
of degree 2r), then the second necessary condition is reduced
to Mr−�d/2(�z)�0, where d is the degree of the polynomial
. For more details on moment matrices, local matrices, and
these necessary conditions, refer to Lasserre [7], Laurent [9]
and references therein.

Define 1(x, y) := (b − x)(x − a) and 2(x, y) := (d −
y)(y − c). Clearly, the support of � is the semialgebraic set
� = {(x, y) ∈ R2 : i (x, y)�0, i = 1, 2}. As 1, 2 are both
quadratic, the necessary conditions for moment and localizing
matrices associated with � read

Mr(z)�0, Mr−1(iz)�0, i = 1, 2. (13)

For the one-dimensional sequences v and w associated with
	 and 
, one has obvious analogue definitions of moment and
localizing matrices. Both measures 	 and 
 are supported on
the set � = {x ∈ R : 3(x)�0}, with 3(x) := (b − x)(x − a),
and so, analogues of (13) can be derived for v and w.

Combining these necessary conditions and the linear rela-
tions for z, v, and w in (7)–(9), one obtains a lower bound for
� by solving the following semidefinite programming problem
Pl

r :

Z(Pl
r ) = inf

z,v,w
〈g, z〉

s.t. Mr(z)�0, Mr(iz)�0, i = 1, 2, (14a)

Mr(v)�0, Mr(3v)�0, (14b)

Mr(w)�0, Mr(3w)�0, (14c)

z(�, �) = d�+1

� + 1
v(�) − c�+1

� + 1
w(�)

−
∑

(�,�)∈N2

�h(�,�)

� + 1
z(� + �, � + �),

∀(�, �) ∈ N2 : � + � + � + ��2r

∀(�, �) : h(�,�) �= 0, (14d)

v(�) = b�+1ek(b)

� + 1
− a�+1ek(a)

� + 1

−
∑
�∈N

�k�

� + 1
v(� + �),

∀� ∈ N : � + ��2r ∀� : k� �= 0, (14e)

w(�) = b�+1el(b)

� + 1
− a�+1el(a)

� + 1

−
∑
�∈N

�l�
� + 1

w(� + �),

∀� ∈ N : � + ��2r ∀� : l� �= 0. (14f)

Similarly, an upper bound of � is obtained by solving the
problem Pu

r with same feasible set as in Pl
r but with max-

imization objective Z(Pu
r ) = supz,v,w〈g, z〉 instead. Clearly,

Z(Pl
r )���Z(Pu

r ) and we next prove that Z(Pl
r ) ↑ � and

Z(Pu
r ) ↓ � as r → ∞.

3. Convergence

In order to prove the convergence of Z(Pl
r ) and Z(Pu

r ), we
need to prove that the linear relations in (7)–(9) define moment
sequences for all measures �, 	, and 
. We start with one-
dimensional moment sequences by the following lemma.

Lemma 1. Let v be the moment sequence of some Borel mea-
sure 	′ on � and assume that v satisfies (8). Then 	′ = 	.

Proof. According to (8),

v(�) =
∫

x� d	′(x) =
[

x�+1

� + 1
ek(x)

]x=b

x=a

−
∫

x�+1

� + 1
k′(x) d	′(x)

∀� ∈ N, (15)

but we also have
∫

x�d	(x) =
[

x�+1

� + 1
ek(x)

]x=b

x=a

−
∫

x�+1

� + 1
k′(x) d	(x)

∀� ∈ N. (16)

Consider the signed measure � := 	′ − 	 on �. From (15) and
(16)∫

x�d�(x) = −
∫

x�+1

� + 1
k′(x) d�(x) ∀� ∈ N. (17)

Let x 	→ p(x) := ∑d
j=1fjx

j so that p′(x) = ∑d−1
j=0fj+1(j +

1)xj for all x. From Eq. (17), one obtains∫
[p′(x) + p(x)k′(x)] d�(x) = 0. (18)

We now prove that (18) also holds for all continuous func-
tion f = xg, where g is continuously differentiable on �.
Recall that polynomials are dense in the space of contin-
uously differentiable functions on � under the sup-norm
max{supx∈�|f (x)|, supx∈�|f ′(x)|} (see e.g. [2,5]). There-
fore, for every � > 0, there exist p� ∈ R[x] such that
supx∈�|g(x) − p�(x)|�� and supx∈�|g′(x) − p′

�(x)|�� si-
multaneously. As (18) is true for the polynomial p = xp�,∫

[f ′(x) + f (x)k′(x)] d�(x)

=
∫

[x(g(x) − p�(x))]′ d�(x)

+
∫

x[g(x) − p�(x)]k′(x) d�(x). (19)

Using [x(g(x) − p�(x))]′ = (g(x) − p�(x)) + x(g′(x) − p′
�(x))

yields

|[x(g(x) − p�(x))]′|�
(

1 + sup
x∈�

|x|
)

� ∀x ∈ �,
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and similarly,

|x[g(x) − p�(x)]k′(x)|� sup
x∈�

|xk′(x)|� ∀x ∈ �.

Therefore∣∣∣∣
∫

[f ′(x) + f (x)k′(x)] d�(x)

∣∣∣∣ ��

(
1 + sup

x∈�
|x| + sup

x∈�

|xk′(x)|
) ∫

d|�|.

As M = (1 + supx∈�|x| + supx∈�|xk′(x)|) ∫
d|�| is finite and

(19) holds for all � > 0, one obtains∫
[f ′(x) + f (x)k′(x)] d�(x) = 0 ∀f := xg, g ∈ R[x].

(20)

Next, for an arbitrary polynomial x 	→ g(x) = ∑d
j=0 gjx

j , let

G(x) := ∑d
j=0(gj /(j + 1))xj+1 so that G′ = g, and let f :=

Ge−k(x). Observe that f (x)/x is continuously and f ′(x) =
g(x)e−k(x) − f (x)k′(x) for all x. Using (20) yields∫

g(x)e−k(x) d�(x) = 0 ∀g ∈ R[x]. (21)

If we let d�′ := e−k(x) d� then
∫

f d�′ = 0 for all continuous
function f on � because polynomials are dense in the space
of continuous functions on �. This in turn implies that �′ is
the zero measure. In addition, as e−k(x) > 0 for all x ∈ R, � is
also the zero measure, and so 	′ = 	, the desired result. �

Using Lemma 1, we can now prove similar results for the
main moment sequences in R2.

Lemma 2. Let v and w be the moment sequences of some Borel
measures 	′ and 
′ on � and assume that v and w satisfy (8)
and (9). Let z be the moment sequence of some Borel measure
�′ on � and assume that z satisfies (7). Then �′ = �.

Proof. By Lemma 1, 	′ = 	 and 
′ = 
. Then, according to (7),

∫
x�y� d�′(x, y) = d�+1

� + 1
v(�) − c�+1

� + 1
w(�)

−
∫

x�y�+1

� + 1

�h(x, y)

�y
d�′(x, y). (22)

Similarly,

∫
x�y� d�(x, y) = d�+1

� + 1
v(�) − c�+1

� + 1
w(�)

−
∫

x�y�+1

� + 1

�h(x, y)

�y
d�(x, y). (23)

Then if we consider the signed measure � := �′ −� on �, one
obtains∫

x�y� d�(x, y) = −
∫

x�y�+1

� + 1

�h(x, y)

�y
d�(x, y). (24)

Using similar arguments as in the proof of Lemma 1, one ob-
tains∫ [

�f (x, y)

�y
+ f (x, y)

�h(x, y)

�y

]
d�(x, y) = 0 (25)

for all functions f = yg, provided that g and �g(x, y)/�y are
continuous.

For every polynomial g ∈ R[x, y] let G := yP , where P ∈
R[x, y] and �G(x, y)/�y=g(x, y) for all x, y. Then with f :=
Ge−h(x,y), one obtains∫

g(x, y)e−h(x,y) d�(x, y) = 0 ∀g ∈ R[x, y]. (26)

Again using similar arguments as in the proof of Lemma 1, one
obtains the desired result �′ = �. �

With Lemmas 1 and 2, we can now prove the following
convergence theorem:

Theorem 1. Consider the semidefinite programming problems
Pl

r and Pu
r defined in (14a). Then

(i) Z(Pl
r ) and Z(Pu

r ) are finite and in addition, both Pl
r and

Pu
r are solvable for r large enough.

(ii) As r → ∞, Z(Pl
r ) ↑ � and Z(Pu

r ) ↓ �.

Proof. Clearly, the collection of truncated sequences of mo-
ments of �, 	, and 
 forms a feasible solution for both problems
Pl

r and Pu
r . Moreover,

|z(�,�)|�
∫

�
|x�y�eh(x,y)| dx dy� sup

(x,y)∈�
|x�y�eh(x,y)|vol(�).

Recall that � ⊂ R2 is compact. Therefore u(�, �) :=
sup(x,y)∈�|x�y�eh(x,y)| = max(x,y)∈�|x�y�eh(x,y)| is finite.
Similarly, upper bounds u1(�) and u2(�) are obtained for |v(�)|
and |w(�)|, respectively. Now consider Pl

r and Pu
r with the

additional bound constraints |z(�, �)|�u(�, �), |u(�)|�u1(�),
and |w(�)|�u2(�) for all �, �.

(i) The feasible sets of these two modified problems are
bounded and closed. The objective functions are linear
and both problems are feasible. Therefore, they are both
solvable and their optimal values are finite.

(ii) Let {zr , vr , wr} be an optimal solution of Pl
r (with ad-

ditional bound constraints) and complete these truncated
sequences with zeros to make them become infinite se-
quences. As |zr (�, �)|, |vr (�)| and |wr (�)|are bounded uni-
formly in r , by a standard diagonal argument, there is a
subsequence {rm} and infinite sequences {z∗, v∗, w∗} such
that the pointwise convergences zrm(�, �) → z∗(�, �),
vrm(�) → v∗(�) and wrm(�) → w∗(�) hold. This in turn
implies

Ms(z∗)�0, Ms(iz∗)�0, i = 1, 2; s = 0, 1, . . . .

Similar conditions hold for v∗ and w∗. As � and � are
compact, by Putinar [11], there exist measures �′ on �
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and 	′ and 
′ on �, such that z∗, v∗, and w∗ are their
respective moment sequences. In addition, by pointwise
convergence, z∗, v∗, and w∗ satisfy the linear relations (7),
(8), and (9). Therefore , by Lemmas 1 and 2, �′ =�, 	′ =	,
and 
′ = 
. And so,

lim
m→∞〈g, zrm〉 = 〈g, z∗〉 = �.

By definition of truncated moment and localizing matri-
ces, every feasible solution of Pl

r+1 generates a feasible
solution of Pl

r with same value. Hence 〈g, zr 〉�〈g, zr+1〉
whenever r � deg(g), and so 〈g, zr 〉 ↑ �. Similar argu-
ments can be applied for the modified problem Pu

r .
So far, the results are obtained for problems Pl

r and Pu
r with

additional bound constraints. In fact it is enough to use the
bounds u(0, 0), u1(0) and u2(0), along with a more subtle
argument similar to the one used in the proof of Theorem 2 in
Lasserre [8]. In other words, with the only additional bounds
z(0, 0)�u(0, 0), v(0)�u1(0) and w(0)�u2(0), Pl

r and Pu
r

are solvable when r is large enough and Z(Pl
r ) ↑ � as well as

Z(Pu
r ) ↓ �. �

4. Computational results

In this paper, and for clarity of exposition, formulations and
convergence proofs have been provided for simple integrals in
two variables over a box � ⊂ R2. As already mentioned, re-
sults for the more general integrals defined in (1) can be found
in Bertsimas et al. [1]. With this approach, we can approxi-
mate not only integrals on hyper-rectangles but also many other
like e.g. order statistic integrals over the set � = {x ∈ Rn :
a�x1 � · · · �xn �b}. To illustrate our moment approach, we
have computed order statistic probabilities of Gumbel’s bivari-
ate exponential distribution and bivariate and trivariate normal
distributions. The required semidefinite programming problems
are coded in Matlab and solved using SeDuMi package [12].
All computations are done under a Linux environment on a
Pentium IV 2.40 GHz with 1 GB RAM.

As shown in Kotz et al. [6], the density function of Gumbel’s
bivariate exponential distribution is

f (x, y) = [(1 + x)(1 + y) − ]e−x−y−xy, x, y�0, (27)

where 0��1. To show how the moment order r affects in-
tegral results, we choose an arbitrary  in [0, 1] and compute
the probability over the set � = {0�x�y�1} using different
r . The results reported in Table 1 is for  = 0.5. The value
�̄ = 1

2 [Z(Pu
r ) + Z(Pl

r )] is approximately 0.215448 while the

Table 1
Computational results for a Gumbel’s bivariate order statistic probability

Moment
degree

r = 2 r = 3 r = 4 r = 5

1
2 [Z(Pu

r )

− Z(Pl
r )]

6.5288E − 03 1.3016E − 04 1.4933E − 06 2.8974E − 09

Time (s) 0.38 0.59 1.28 6.23

error ��= 1
2

[
Z(Pu

r ) − Z(Pl
r )

]
decreases to 10−9 when r = 5.

If a very high accuracy is not needed, we can approximate
this integral with r = 3 or 4 in much less time as reported in
Table 1 (where the computational time is the total time for solve
both Pu

r and Pl
r ).

The second distribution family that we consider is the nor-
mal family. The density function of a multivariate normal dis-
tribution with mean μ and covariance matrix � = AA′ is

f (x) = 1

(2�)n/2 det(�)1/2 e−(1/2)(x−μ)′�−1(x−μ). (28)

We have generated μ and A with random elements in [−1, 1].
Order statistic integrals of these distributions are then com-
puted with variables restricted in [−1, 1]. The error tolerance
is set to be 5 × 10−5 (4-digit accuracy) and the moment order
r is increased until this accuracy is achieved. For n= 2 (bivari-
ate distribution), we have computed integrals for 100 randomly
generated distributions. The average moment order is r̄ = 3.64,
which means that in most instances we only need to use r = 3
or 4. Similar to Gumbel’s exponential distribution case, the av-
erage computational time is around 1 s with r =4 for the bivari-
ate normal distributions. For n= 3 (trivariate distributions), we
again can solve the semidefinite programming problems with
r = 4 or 5 to achieve the required accuracy. However, in this
case the computational time is large (around 250 and 4000 s
for r = 4 and 5, respectively). Clearly, in comparing with re-
sults obtained with algorithms specially designed for rectangu-
lar normal probabilities by Genz [4], our method for trivariate
normal distributions is not competitive. However, recall that our
framework is designed to accommodate a more general class
of exponential integrals with a novel approach which permits
to compute other types of probabilities such as order statistic
probabilities. In addition, the framework we proposed could be
further developed to calculate integrations not only with poly-
nomials but also rational functions, which have been recently
analyzed by Lasserre [8]. Computationally, one may further an-
alyze the structure of semidefinite programming problems Pu

r

and Pl
r to reduce the computational time. For example, using

linear relations presented in Section 2 to eliminate some mo-
ment variables could reduce substantially the problem size in
terms of number of variables.
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